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Leptodactylus fuscus

 

 is a neotropical frog ranging from Panamá to Argentina, to the east of the Andes mountains,
and also inhabiting Margarita, Trinidad, and the Tobago islands. We performed phylogenetic analyses of 12S rRNA,
16S rRNA, tRNA-Leu, and ND1 mitochondrial (mt) DNA sequences from specimens collected across the geographic
distribution of 

 

L. fuscus

 

 to examine two alternative hypotheses: (i) 

 

L. fuscus

 

 is a single, widely distributed species,
or (ii) 

 

L. fuscus

 

 is a species complex. We tested statistically for geographic association and partitioning of genetic
variation among mtDNA clades. The mtDNA data supported the hypothesis of several cryptic species within

 

L. fuscus.

 

 Unlinked mtDNA and nuclear markers supported independently the distinctness of a ‘northern’ phyloge-
netic unit. In addition, the mtDNA data divided the southern populations into two clades that showed no sister rela-
tionship to each other, consistent with high differentiation and lack of gene flow among southern populations as
suggested by allozyme data. Concordance between mtDNA and allozyme patterns suggests that cryptic speciation
has occurred in 

 

L. fuscus

 

 without morphological or call differentiation. This study illustrates a case in which lineage
splitting during the speciation process took place without divergence in reproductive isolation mechanisms (e.g.
advertisement call in frogs), contrary to expectations predicted using a biological species framework. © 2006 The
Linnean Society of London, 

 

Biological Journal of the Linnean

 

 Society, 2006, 

 

87

 

, 325–341. No claim to original US
government works.

 

ADDITIONAL KEYWORDS:

 

 Amphibia – cryptic speciation – phylogeography – South America – species

 

concept – species delimitation.

 

INTRODUCTION

 

The leptodactylid frog 

 

Leptodactylus fuscus

 

(Schneider, 1799) is distributed in the neotropical
region ranging from Panamá to Argentina, to the east
of the Andes mountains, as well as inhabiting the
islands of Margarita, Trinidad and Tobago (Heyer &
Reid, 2003). It occupies open habitats and is a good col-
onizer of river edges and recently modified habitats in
forested regions (Wynn & Heyer, 2001). 

 

L. fuscus

 

 char-

acterizes the specialized reproductive mode typical of
the 

 

L. fuscus

 

 ‘species group’ that consists of the place-
ment of a foam nest in an underground chamber
(Heyer, 1978). Behavioural and physiological adapta-
tions to water-stress conditions in marked seasonally
dry climates have been found in larval and adult
stages of 

 

L. fuscus

 

 (Downie, 1984, 1994a, b; Abe &
Garcia, 1990; Downie & Smith, 2003).

The widespread distribution of 

 

L. fuscus

 

 across
diverse climatic and physiographic zones has raised
questions about the identity of 

 

L. fuscus

 

 as a single
taxonomic unit. Heyer (1978) found morphometric dif-
ferences between northern (Colombia and Panamá)
and southern (Argentina) populations; however, he
considered the differences to represent intraspecific
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geographic variation because of similar larval mor-
phology and the lack of marked differences in the few
advertisement call recordings available at the time.
Karyotypic data also supported the single-species
interpretation (Bogart, 1974), although geographic
variation has been found subsequently in the mor-
phology and banding patterns of chromosomes (Heyer
& Diment, 1974; Silva, Haddad & Kasahara, 2000). In
contrast, an immunological study suggested that more
than one taxon might be hidden within 

 

L. fuscus

 

(Maxson & Heyer, 1988).
Recently, the variabilities of 24 allozymic loci were

screened for 16 populations throughout the geo-
graphic distribution of 

 

L. fuscus

 

 (Wynn & Heyer,
2001). The allozyme data suggested that populations
of 

 

L. fuscus

 

 cluster into three genetic units: (i) Pan-
amá, (ii) populations north of the Amazon River, and
(iii) populations south of the Amazon River. Moreover,
the allozyme data showed evidence of restricted gene
flow among the southern populations. Although these
authors could not determine the geographic bound-
aries between the genetic units, they concluded that

 

L. fuscus

 

 is a complex of several species (Wynn &
Heyer, 2001). Subsequently, the genetic units of

 

L. fuscus

 

 were reconsidered using advertisement call
characteristics that facilitate species recognition
(Heyer & Reid, 2003). Call characteristics neither
confirmed the three previously suggested genetic
units nor suggested an alternative geographic parti-
tioning of populations. Although advertisement call
data supported the single-species hypothesis, Heyer
& Reid (2003) argued that speciation in 

 

L. fuscus

 

could have occurred without advertisement call
differentiation.

In this study, we evaluated the relative support of
mitochondrial (mt) DNA sequence data for two alter-
native hypotheses: (i) 

 

L. fuscus

 

 is a single widely
distributed species, or (ii) 

 

L. fuscus

 

 is a species com-
plex. We applied two complementary phylogenetic
approaches to test these hypotheses: (i) a mtDNA tree-
based method (Wiens & Penkrot, 2002; hereafter WP),
and (ii) a phylogeographic nested clade analysis
(Templeton, 1998, 2001; hereafter NCA). The WP
method consists of a dichotomous protocol that makes
species-level decisions based on the geographic exclu-
sivity of mtDNA haplotypes. This tree-based method is
effective in resolving species boundaries using a set of
testable hypotheses about species limits. The WP pro-
tocol consists of: (1) assessing geographic differentia-
tion through available representative localities for
which most populations are represented by few sam-
ples, and (2) not assigning geographic variability a pri-
ori to discrete geographic units (as usually occurs in
studies of well-sampled species). The geographic asso-
ciations of mtDNA clades were tested using NCA,
which has the potential to detect historical vicariant

events and thus corroborate any proposed species
units based on the WP method.

There is a growing number of species definitions
and criteria to delimit species (reviewed by de
Queiroz, 1998). We adopted the general lineage con-
cept of species because of its focus on the concept of
species as segments of population-level lineages (de
Queiroz, 1998). A corollary criterion, compatible with
the general lineage species concept, was utilized
under the assumption that if lineage differentiation
is occurring or has already occurred in 

 

L. fuscus

 

, we
should be able to detect these divergences and to
reconstruct their genealogical relationships using
mtDNA sequences.

MtDNA markers have been used widely to detect
evolutionary lineages and to reconstruct their phylo-
genetic relationships (Avise, 2000). These markers are
especially appropriate to address genealogies among
closely related organisms, because they: (1) have high
rates of evolution, (2) are maternally inherited, (3)
have short allele coalescence times, and (4) are easily
amplified using PCR techniques (Moritz, Dowling &
Brown, 1987; Moore, 1995; but see caveats in Hoelzer,
1997). The phylogeographic patterns revealed in
mtDNA lineages have been useful in resolving
species limits in diverse taxa (Mulcahy & Mendelson,
2000; Riddle, Hafner & Alexander, 2000a, b; Dawood,
Channing & Bogart, 2002; Wiens & Penkrot, 2002).

 

MATERIAL AND METHODS

 

Frozen tissue samples of muscle and liver from the 16
populations of 

 

L. fuscus

 

 utilized by Wynn & Heyer
(2001),  plus  an  additional  sample  from  Guyana,
were included in this study. 

 

L. mystaceus

 

 and

 

L. mystacinus

 

, members of the 

 

L. fuscus

 

 species
group, were used as outgroup taxa. Localities sampled
(Fig. 1) and collection information of specimens uti-
lized in this study are listed in the Appendix.

 

DNA 

 

EXTRACTION

 

, 

 

AMPLIFICATION

 

, 

 

AND

 

 

 

SEQUENCING

 

Total genomic DNA was extracted following the stan-
dardized protocols of Hillis 

 

et al

 

. (1996). Fragments of
the 12S ribosomal RNA (rRNA), 16S rRNA, the trans-
fer RNA for leucine (tRNA-Leu), and ND1 mt genes
were PCR amplified (Palumbi, 1996) using an MJ
Research PTC-200 thermocycler. Double-stranded
PCR amplifications were performed using the
Promega Master Mix (Promega). A segment of about
400 base pairs (bp) from the 12S rDNA gene was
amplified with primers 12Sa 5

 

′

 

-AAACTGGGATTA
GATACCCCACTAT-3

 

′

 

 and 12Sb 5

 

′

 

-GAGGGTGA
CGGGCGCTGTGT-3

 

′

 

 using the following thermal
cycling conditions: initial denaturation at 94 

 

°

 

C for
2 min 30 s, followed by 30 cycles of (i) 94 

 

°

 

C for 1 min,
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(ii) 53 

 

°

 

C for 1 min, and (iii) 72 

 

°

 

C for 1 min 30 s. A
fragment approximately 2050 bp in length, including
part of the 16S gene, tRNA-Leu, and part of the ND1
gene was assembled from two shorter fragments
which had been amplified separately. The 5

 

′

 

-fragment
was amplified using primers 16Sc 5

 

′

 

-GT(A/C)GGC
CTAAAAGCAGCCAC-3

 

′

 

 and 16Sd 5

 

′

 

-CTCCGGTCT
GAACTCAGATCACGTAG-3

 

′

 

 under the following
conditions: initial denaturation at 94 

 

°

 

C for 2 min fol-
lowed by 34 cycles of 94 

 

°

 

C for 1 min, 58 

 

°

 

C for 1 min,
and 72 

 

°

 

C for 1 min 30 s. The primers ND1tmet 5

 

′

 

-
TTGGGGTATGGGCCCAAAAGCT-3

 

′

 

 and ND116S 5

 

′

 

-
TTACCCT(A/G)GGGATAACAGCGCAA-3

 

′

 

 were used
to amplify the 3

 

′

 

-end under the following conditions:
initial denaturation at 94 

 

°

 

C for 3 min, followed by 36
cycles of 94 

 

°

 

C for 1 min, 55 

 

°

 

C for 1 min, and 72 

 

°

 

C for
1 min 30 s. Amplified segments were cleaned and puri-
fied using Wizard Preps DNA Purification System
(Promega).

Purified products were cycle-sequenced with the
dideoxy chain termination method using the Sequi-
Therm Excel II DNA sequencing kit (Epicentre Tech-
nologies). Infrared-labelled primers were used in
sequencing reactions (Licor Biotechnology) under the
following conditions: initial denaturation at 95 

 

°

 

C for
2 min 30 s, followed by 30 cycles of 95 

 

°

 

C for 30 s,
58 

 

°

 

C for 30 s, and 70 

 

°

 

C for 30 s. In addition to the
primers listed above, two internal primers were used
in sequencing reactions only, 16SaR 5

 

′

 

-CGCCTGTT
TACCAAAAACAT-3

 

′

 

 and ND1tmet2 5

 

′

 

-CCCTTTC(T/
C)ATAGAAGTTCAAATCTTCTCG-3

 

′

 

, that anneal to
approximately the middle of the 16Sc

 

−

 

16Sd and
ND1tmet–ND116S fragments, respectively. Sequenc-
ing products were run in 6% and 4% acrylamide
(44 cm and 66 cm in length, respectively) gels using a
Licor DNA 4000 L automatic sequencer. Sequencing
reactions  were  single  stranded;  double-stranded
PCR fragments were sequenced in both directions.

 

Figure 1.

 

Map showing the localities sampled in this study. Dots correspond to localities grouped in basal clade A,
triangles correspond to localities of basal clade B, and squares correspond to localities of basal clade C.
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GenBank accession numbers for the sequence data
are AY905695–AY905717 for the 12S fragment and
AY911264–AY911286 for the 16S 

 

+

 

 tRNA-Leu 

 

+

 

 ND1
fragment.

 

A

 

LIGNMENT

 

 

 

AND

 

 

 

PHYLOGENETIC

 

 

 

ANALYSES

 

Sequences were first aligned using matching se-
quences from complementary strands. Then, the chro-
matographs generated in BaseImagr software (Licor
Biotechnology) were inspected visually for mismatches
of aligned positions to confirm or manually correct the
automatic reading. Verified sequences were aligned
with ClustalX (Thompson 

 

et al

 

., 1997) using the multi-
ple alignment option. Alignments were improved con-
sidering secondary structure constraints (Kjer, 1995;
Hickson 

 

et al

 

., 1996) using the models for the 12S and
16S genes of 

 

Xenopus laevis

 

 from R. R. Gutell’s labora-
tory (Cannone 

 

et al

 

., 2002). Character incongruence
among partitions of the dataset was evaluated with an
incongruence length difference (ILD) test (Farris 

 

et al

 

.,
1995) implemented as the partition-homogeneity test
in PAUP* 4.0 (Swofford, 2002).

Maximum parsimony (MP) and maximum likeli-
hood (ML) analyses were run as implemented in
PAUP* 4.0 (Swofford, 2002). Weighted MP and the
optimization  of  model  parameters  in  ML  followed
a sensitivity analysis approach to detect the most
stable clades under different analytical assumptions
(Giribet, 2003). Character states were treated as unor-
dered and gaps were considered as a fifth character;
heuristic searches were performed with one hundred
random additions of sequences and tree bisection-
reconnection (TBR) branch swapping. Strict consensus
trees were calculated when several equally parsimo-
nious trees resulted from the MP searches. ML analy-
ses were run using the general time-reversible model
with a gamma distribution of across-site rate varia-
tion and an estimated proportion of invariable sites
(GTR 

 

+

 

 

 

Γ

 

 

 

+

 

 I, Swofford 

 

et al

 

., 1996). This model
provided the best fit to our dataset as determined by
ModelTest 3.0 (Posada & Crandall, 1998). ML was run
applying a successive approximations approach, start-
ing with a neighbour-joining tree, estimating model
parameters with ML, and performing new searches
using recalculated parameters from the previous run
until log likelihoods converged on stable values. A
final ML search with user-defined stabilized model
parameter values was performed with a single random
addition of sequences and TBR branch swapping.

Clade support of inferred trees was assessed by non-
parametric bootstrapping (Felsenstein, 1985), based
on 1000 pseudoreplicates (10 random additions on
each pseudoreplicate) in MP and 100 pseudoreplicates
(a single random addition on each pseudoreplicate) in
ML to minimize computation time. We considered

Bootstrap support of 70% or higher as strong support
(Hillis & Bull, 1993).

Weighted MP analyses were run under two differ-
ent schemes. First, the substitution bias toward tran-
sitions was considered separately for each of five data
partitions (12S, 16S, and first, second, and third codon
positions of ND1) using stepmatrices. To determine
the codon positions, ND1 sequences were translated
into proteins using MacClade 4.0 (Maddison & Madd-
ison, 2000) and the reading frame was aligned with
the complete ND1 sequence of 

 

Rana nigromaculata

 

(Sumida 

 

et al

 

., 2001). Transition/transversion (ti : tv)
ratios were estimated for each data partition using
ML. The ti : tv weights applied to each data parti-
tion were: ti : tv 

 

=

 

 1 : 4 (12S), ti : tv 

 

=

 

 1 : 3 (16S),
ti : tv 

 

=

 

 1 : 6 (first codon position), ti : tv 

 

=

 

 1 : 3 (second
codon position), and ti : tv = 1 : 8 (third codon posi-
tion). Second, loop positions in ribosomal sequences
received twice the weight of stem positions whereas
third codon positions of ND1 were downweighted once
with respect to the other codon positions. The second-
ary structure models of 12S and 16S of X. laevis (Can-
none et al., 2002) were used to determine stem and
loop positions in the dataset. Upon alignment with
the ribosomal sequences of X. laevis, a total of 702
stem and 719 loop positions were determined in the
dataset (available at http://learning.richmond.edu/
Leptodactylus/matrices.html).

Phylogenetic  analyses  were  also  performed  using a
Bayesian inference approach as implemented in Mr-
Bayes 2.0 (Huelsenbeck & Ronquist, 2001). Bayesian
analyses were run under the GTR + Γ + I model with
parameters estimated separately for each of six data
partitions: 12S, 16S, tRNA-Leu, and first, second, and
third codon positions of ND1. Four simultaneous Monte
Carlo Markov Chains (MCMC) were run for 5 000 000
generations and trees were sampled every 100 gener-
ations. L. mystacinus was used as the outgroup in
Bayesian analyses because this species was found to be
more distantly related to L. fuscus compared with
L. mystaceus based on our MP and ML analyses. Two
independent runs were performed to check for conver-
gence of log likelihoods in stationarity (Huelsenbeck &
Ronquist, 2001; Leaché & Reeder, 2002). Convergence
among different runs was evaluated by comparing the
Bayesian support (posterior probability) of clades
(Huelsenbeck & Imennov, 2002). Trees sampled in
MCMC after the burn-in were summarized using 50%
majority-rule consensus trees to obtain mean estima-
tions of branch lengths and to calculate posterior prob-
abilities of clades (Huelsenbeck & Ronquist, 2001).

PHYLOGEOGRAPHIC ANALYSES

ML and MP trees of the combined dataset were iden-
tical; we used the branch lengths of the unweighted

http://learning.richmond.edu/
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MP tree as a guide to make a nested clade design
applying the nesting rules described in Templeton &
Sing (1993) and Crandall (1996). The interior-tip sta-
tus of clades was determined with outgroup rooting.
The nested design was input in GeoDis 2.0 (Posada,
Crandall & Templeton, 2000), supplying the geo-
graphic distances between localities to run a NCA
based on 10 000 random permutations. NCA was per-
formed on nesting clades that consisted of more than
one locality; distinct localities were defined as samples
collected from more than 40 km apart. Only the São
Paulo sample had multiple individuals from a single
locality.  Significant  associations  between  clades
and geography were interpreted with the inference
key published in Templeton, Routman & Phillips
(1995) and updated on November 25th, 2003 in the
GeoDis website (http://darwin.uvigo.es/software/
geodis.html) to distinguish between demographic and
historical factors.

In addition, significance of the association between
geographic and genetic distances was examined with
Mantel tests implemented in NTSYSpc software
(Rohlf, 1998) using the raw statistic option with 1000
random permutations. We also performed an analysis
of molecular variance (AMOVA) in Arlequin v2.0
(Schneider, Roessli & Excoffier, 2000) in order to
assess the hierarchical structure of sequence variation
distributed at three levels: within populations, among
populations, and among major mtDNA clades as
recovered in phylogenetic analyses. We ran 10 000
permutations of a pairwise matrix of uncorrected p-
distances among haplotypes in order to obtain the null
distributions and to test for the significance of vari-
ance components and φ-statistics (Excoffier, Smouse &
Quattro, 1992).

RESULTS

SEQUENCE VARIATION

Unique haplotypes were found at all localities, except
for Arima and Nariva. Three out of five São Paulo indi-
viduals had the same haplotype (Table 1). The mean
(± standard deviation) uncorrected distance among all
localities was 4.1% ± 1.8%, with the greatest distances
being those of the São Paulo vs. Palos Blancos and
São Paulo vs. Guyana samples (7.0%) and the mini-
mum distance being between the Arima and Icacos
samples (0.0%) (Table 1). The maximum divergence
within a population (São Paulo) was 0.9%. The mean
distance  between  the  ingroup  and  L. mystaceus
was 11.3% ± 0.4% and between the ingroup and
L. mystacinus it was 12.3% ± 0.4%; the uncorrected
distance between the outgroup taxa was 13.2%
(Table 1).

Genetic distances within L. fuscus revealed a pat-
tern in which northern populations had less variation

than did southern populations, although there was not
a clear relationship between geographic and genetic
distances on a smaller geographic scale. For example,
the greatest geographic distances among Trinidad and
Tobago, among Roraima, and between Argentinean
samples were around 200 km. However, the maximum
genetic distance among Trinidad and Tobago samples
was 0.3% (which lies within the range of variation
within a population), whereas the genetic distance
among Roraima samples was 3.1%, and between
Argentinean localities was 6.6%. This irregular geo-
graphic pattern across the species distribution caused
a moderate but significant correlation between geo-
graphic and genetic distances (r = 0.69, P = 0.001).
This raw measure of association suggests that some
populations or groups of populations differed geneti-
cally more or less as expected by geographic distance
alone. A phylogenetic analysis to assess the historical
patterns of relationships among populations can be
helpful when geographic distances do not account
completely for the patterns of genetic differentiation.

PHYLOGENETIC RELATIONSHIPS

The ILD test showed significant partition heterogene-
ity (10 000 replicates, P = 0.001) among the following
two partitions: (1) the noncoding 12S and 16S gene
sequences; (2) the protein-coding ND1 gene sequence.
The tRNA segment was not included in the test. Con-
sequently, we conducted separate parsimony analyses
for the ribosomal, ND1, and combined sequences
dataset to evaluate data partition incongruence
(Wiens, 1998). The ribosomal dataset consisted of
1425 bp that included 306 (21.5%)  variable positions –
of which 116 (8.1%) were parsimony-informative – and
16 (1.1%) indels. The consensus of 19 most parsimoni-
ous trees of 369 steps (L = 369, and a consistency
index, CI, of 0.718) only resolved a few clades com-
posed of up to four samples. The ND1 dataset con-
sisted of 955 bp, of which 323 (33.8%) were variable
positions and 214 (22.4%)  were parsimony informa-
tive. The ND1 data analysis resulted in a single most
parsimonious tree (L = 633, CI = 0.649) that provided
highly supported resolution at both deep and shallow
divergences. The combined dataset consisted of
2453 bp, of which 555 (22.6%) were variable positions,
including 333 (13.6%) parsimony-informative posi-
tions and 16 (0.7%) indels. The single MP tree recov-
ered (L = 1062, CI = 0.642) was very similar to the
trees found in weighted MP, ML, and Bayesian anal-
yses (Fig. 2). MP weighting considering substitutional
biases found four trees (L = 2095, CI = 0.747, not
shown); two equally parsimonious trees (L = 1487,
CI = 0.646,  not  shown)  were  recovered  in  the  ana-
lysis considering secondary structure of ribosomal
sequences and down-weighting third codon positions

http://darwin.uvigo.es/software/
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Figure 2. Consensus tree (50% majority-rule) from Bayesian analysis. Numbers above the branches are clade posterior
probability values derived from two independent runs; values below branches are bootstrap values (> 50%) derived from
maximum likelihood (ML)/unweighted maximum parsimony (MP)/weighted transition vs. transversion MP/weighted
secondary structure and codon positions MP.
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of coding sequences. The Bayesian trees found in the
two independent MCMC runs resulted from 50%
majority-rule consensus trees of the last 30 000 trees.
In both runs, the log likelihoods in stationarity con-
verged after 100 000 generations; consequently, the
first 20 000 trees were discarded. The topologies
reconstructed in both runs were identical and branch
support values were very similar, suggesting conver-
gence in independent analyses (Fig. 2).

The tree using ribosomal sequences provided less
resolution than did the tree from the combined
dataset. Furthermore, it conflicted with the combined
tree in having strong support for a [Boa Vista–Igarapé
Cocal] clade, not found in the combined results
(Fig. 2). The parsimony results for the ND1 data
showed comparable resolution with the combined
results and differed only in grouping São Paulo either
with the Pernambuco or J. V. González samples
(Fig. 2). Thus, applying Wiens’s (1998) protocol, anal-
yses of separate data partitions only identified two
conflicts which were localized within two major clades
supported in the combined-data analysis. However,
the three deepest nodes, i.e. the three identified major
clades, of the combined analyses were not in conflict
with the separate data analyses, although, relation-
ships within these clades were partially unresolved.

All analyses of the combined dataset recovered the
same basic topology; consequently we describe phylo-
genetic relationships based on the Bayesian tree
(Fig. 2) and mention deviations from this pattern. The
ingroup was recovered as a strongly supported mono-
phyletic clade in all analyses. Three major clades in
the ingroup were recovered in all analyses: A, B, and
C; among these, clades A and B showed closer
relationships to each other. Clade A consisted of all
samples  from  northern  South  America  (north  of
the Amazon river) including Panama, Trinidad, and
Tobago, with the exception of the Pará sample (Fig. 1).
Clade A was supported strongly in all MP analyses
and supported moderately in ML and Bayesian
analyses. Populations from Beni and Palos Blancos
(Bolivia) were sister taxa and formed a monophyletic
group, clade B, with the Embarcación (Argentina)
population. Clade B was restricted to western South
America, south of the Amazon River (Fig. 1). Clade B
was supported strongly in all analyses whereas clade
[A + B] was recovered with high support in MP and
moderate support in ML and Bayesian analyses.
Clade C consisted of the Pernambuco, J. V. González,
and São Paulo localities and represented the eastern,
south-western, and southern borders of the species
range (Fig. 1). Clade C was supported strongly in all
analyses. Three haplotypes were found among five
individuals in São Paulo, which formed a strongly sup-
ported cluster with slight differences among haplo-
types (0.0%, 0.1% and 0.9%). Major clades A, B and C

did not overlap geographically, although clades B and
C may be parapatric.

Within the large clade A, a distinct insular subclade
consisting of populations in Trinidad and Tobago
islands was recovered in all phylogenetic analyses
(subclade A1). Although relationships within this
insular subclade were not resolved, samples from
Trinidad were genetically more similar to each other
than they were to Tobago (Table 1). The greatest varia-
tion within this insular group (0.3%) was lower than
was the intrapopulation variation found in São Paulo;
furthermore, the smallest genetic distance between
samples of this insular subclade (Arima and Icacos)
and a mainland population (Boa Vista) was 2.2%. Two
other subclades within clade A were found in all analy-
ses: one subclade grouped Normandia, Pará, French
Guiana, and Guyana (subclade A2) while the other
subclade included Panamá and Boa Vista (subclade
A3). The other population from the State of Roraima
(Brazil), Igarapé Cocal, was basal in clade A except in
the ti : tv weighted MP analysis, in which Igarapé
Cocal formed a polytomy with the three subclades
(Fig. 2).

PHYLOGEOGRAPHIC ANALYSES

The complete nested design used in the NCA is
available to view at http://learning.richmond.edu/
Leptodactylus/matrices.html. The NCA rejected the
null hypothesis of no geographic association of clades
in: (i) clade 7-2, and (ii) the total cladogram (Fig. 3).
We used the GeoDis inference key to determine what
kind of demographic processes and/or historical
events may have caused the significant associations.
The permutation tests performed for clade 7-2 indi-
cated that significant effects were as a result of the
distance patterns of nested clade 6-3 only. Clade 6-3,
including samples from Tobago, Trinidad, and Iga-
rapé Cocal, showed both lower clade (Dc) and nested
clade (Dn) distances than would be expected ran-
domly. However, as interior-tip status of clades could
not be determined from the nested design (all three
nested clades containing samples were tip clades), we
could not go any further with the inference key,
resulting in an inconclusive outcome. The permuta-
tion analysis of the total cladogram revealed signifi-
cant effects in tip clades as well as in the test of
interior vs. tip clades. Nested clade 7-1, consisting of
all samples north of the Amazon River except the
samples in nested clade 7-2, showed lower Dc dis-
tances than would be expected randomly. The other
tip clade consisting of J. V. González and São Paulo
samples, nested clade 7-3, showed significantly lower
Dc and higher Dn distances than would be expected
by chance alone. The test of interior vs. tip clades (7-1
and 7-3 were tip clades and 7-2 was interior) found

http://learning.richmond.edu/
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significantly higher Dc distances than would be
expected randomly. Based on these significant associ-
ations and the patterns of geographic overlap among
clades, the inference key did not allow discrimination
between isolation by distance and long distance dis-
persal resulting from inadequate geographic sam-
pling (lack of samples from intermediate areas
between clades 7-1, 7-2, and 7-3).

An AMOVA was run to test for the significance of
molecular variance statistics at three hierarchical lev-
els: within populations, among populations within
major clades, and among major clades. The AMOVA
results showed significant differentiation among
major clades and among populations within clades
(Table 2). Variation among major clades accounted for
about half of the total variation across the distribu-
tional range of L. fuscus, whereas the variation among
populations within major clades accounted for 43%.
Mantel tests found significant, low matrix correlations
between patristic mtDNA distances and geography
(r = 0.63, P = 0.001) and between patristic mtDNA dis-
tances and Nei’s distances (r = 0.52, P = 0.001) based
on the allozyme data.

DISCUSSION

PHYLOGENETIC UNITS

All phylogenetic analyses performed under a variety
of assumptions about DNA sequence evolution recov-
ered three basal clades within L. fuscus. The basal
clades did not overlap geographically suggesting that
these three phylogenetic units are allopatric, although
geographic sampling is necessary to verify this asser-
tion. In particular, clades B and C seemed to approach
each other in north-western Argentina and further
sampling in this area promises to give insight into the
degree of genetic isolation between the units. Fine-
grained, multiple-character geographic sampling will
be necessary to detect either abrupt or gradual
changes in genetic patterns in contact zones between
phylogenetic units. Genetic distances among basal
clades of L. fuscus were higher than those values
reported as indicative of interspecific differentiation in
frogs. For example, intraspecific divergence in 16S mt
sequences of morphologically, ecologically, and bioa-
coustically distinct species of Malagasy frogs never
exceeded 2% (Vences et al., 2004). Furthermore, these

Figure 3. Nested clade analysis scheme. The numbering of clades refers to the nested design available to view at http://
learning.richmond.edu/Leptodactylus/matrices.html. For clades showing significant association, the clade distance (Dc)
and the nested clade distance (Dn) values as used in the inference chain (IC) are provided. S indicates distances significantly
smaller than expected and L indicates distances significantly larger than expected; I-T indicates interior vs. tip distances,
and the numbers of tip clades are italicized when their status could be determined from the nested design.
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authors suggest that the pairwise distances from 16S
mt sequences among the basal clades in their study of
Ptychadena mascareniensis represent cryptic species.
In L. fuscus, average distances of 16S mt sequences
among different basal clades were: 2.26% between
clades A and B and 2.95% between clades B and C, and
between clades C and A; consequently, in L. fuscus dif-
ferentiation among basal clades has surpassed the 2%
threshold of intraspecific variation for this mtDNA
marker. Furthermore, genetic distances between
clades using all available sequences in our study were:
3.99% between clades A and B, 6.31% between clades
B and C, and 6.18% between clades C and A.

A phylogenetic approach has been used widely to
uncover diagnosable phylogenetic units in mtDNA
phylogenies of several cryptic taxa (Ashton & de
Queiroz, 2001; Burbrink, 2002; Feldman & Spicer,
2002; Masta et al., 2002; Wiens & Penkrot, 2002;
Zaldívar-Riverón, León-Regagnon & Nieto-Montes de
Oca, 2004). As an example, the WP method applies a
phylogenetic criterion to propose species boundaries
considering geographically separated mtDNA clades
as different phylogenetic species (Wiens & Penkrot,
2002). The application of the WP method on all phylo-
genetic trees of L. fuscus resulted in the following
decisions: (i) the focal species (L. fuscus) comprised an
exclusive set of haplotypes (i.e. it is monophyletic rela-
tive to the outgroup taxa), and (ii) there were three
well-supported basal clades (A, B, and C) concordant
with geography (clades did not overlap). We did not
have multiple samples available to test for haplotype
exclusivity of all localities (except for São Paulo) and
therefore to evaluate the occurrence of gene flow
among them. However, this sampling limitation did
not contradict the fact that the major clades of
L. fuscus were deep, well-supported clades of haplo-
types that did not overlap geographically. Thus, based
on this phylogenetic approach, the phylogenetic anal-
yses of mtDNA supported the hypothesis of L. fuscus
as a ‘species complex’. The degree of support of the
mtDNA data for several phylogenetic species within
L. fuscus decreased in the following order: (i) two phy-
logenetic species consisting of the clades [A + B] and
C; (ii) three phylogenetic species represented by each

of the three clades A, B, and C; (iii) a fourth phyloge-
netic species restricted to the Trinidad and Tobago
islands.

ASSOCIATION BETWEEN MTDNA VARIATION 
AND GEOGRAPHY

The NCA analyses did not reveal any significant asso-
ciation of mtDNA clades with geography consistent
with a pattern of historical fragmentation of popula-
tions. Indeed, the NCA analyses could not distinguish
between different populations’ processes to account for
the distance patterns that occurred at the highest nest-
ing levels that are supposed to provide high statistical
power. Thus, the phylogeographic analysis did not cor-
roborate the species delimitation proposed by the WP
method based on a phylogenetic criterion, although
this result by itself does not refute the hypothesis of
multiple species within L. fuscus. It is important to
note that the nested design did not allow us to contrast
against each other the major clades, and it is precisely
these phylogenetic units that could be proposed as dif-
ferent species. When a separate nested design was done
for each major clade and then the three major clades
were nested at the highest nesting level, the outcome
of  the  NCA  was  inconclusive  (results  not  shown).
In this case, the inference key established that the
sampling was inadequate because major clades did
not overlap geographically and the species occurred in
the nonsampled areas between the clades. Thus, the
available samples limited the efficiency of this phy-
logeographic analysis to corroborate or reject the
distinctiveness of the three phylogenetic units.

Beyond these results, the NCA analyses did find sig-
nificant association patterns at the highest nesting
level and within clade A. In the first case, the permu-
tation tests indicated that samples from Trinidad,
Tobago, and Igarapé Cocal (clade 6-3) were closer to
each other than would be expected by random chance.
However, the clustering of the inland sample, Igarapé
Cocal, with the insular samples of nested clade 7-2
resulted in clade 6-3 appearing closer to the other
nested clades (6-1 and 6-3) than would be expected by
random chance. Supposing that we were to include all

Table 2. Results of AMOVA applied on a hierarchical design in which populations were assigned to three groups
representing basal clades A, B, and C as recovered in phylogenetic analyses

Source of 
variation  d.f. φ-statistics

Variance 
components

Percentage 
of variation

Among major clades 2 0.512 33.092* 49.73
Among populations within major clades 14 0.860 28.855* 43.36
Within populations 4 0.932 4.600* 6.91

*P < 0.005.
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insular samples in a single clade (likely producing a
low Dc and a high Dn), the lack of samples from the
mainland, just across from Trinidad, would prevent us
from inferring fragmentation between the insular and
mainland populations. In the second case, the permu-
tation tests indicated that (i) most samples from
northern South America were significantly close to
each other, and (ii) that J. V. González and São Paulo
(clade 7-3) were significantly close to each other but
relatively far from the other clades (7-1 and 7-2) (an
effect probably resulting from the multisampled São
Paulo locality). In addition, the tip vs. interior tests
found larger Dc distances than would be expected by
random chance.

The NCA found significant associations between cla-
distic patterns and geography at several nesting levels
because some clades were closer or further away than
would be expected by chance. The cladistic patterns
within basal clades A, B, and C did not correlate well
with geographic distances as indicated by a Mantel
test performed on patristic mtDNA distances.
Although there was a lack of geographic structuring
within the basal clades, the similar partitioning of
genetic variability within and among clades may have
obscured the underlying, deep differentiation among
basal clades A, B, and C. The AMOVA results indi-
cated substantial interclade and interpopulational dif-
ferentiation within clades with variability among
basal clades being just greater than that found within
those clades. This suggests that the differentiation
within each basal clade has been so large that it
masks their relationships. Consequently, the histori-
cal, genealogical diversification into three mtDNA
units (clades A, B, and C) could have been blurred in
the phylogeographic analyses while still being recov-
ered in phylogenetic trees.

CONCORDANCE BETWEEN MTDNA AND OTHER 
DATASETS

The distinction of different species using mtDNA
genealogies alone can be misleading if not corrobo-
rated by independent datasets (Moritz, 1994; Wake &
Jockusch, 2000; Jockusch & Wake, 2002). The evidence
in favour of several phylogenetic units within
L. fuscus would be strengthened if our mtDNA-
defined units were concordant with patterns of varia-
tion found in other datasets (Sites & Crandall, 1997).
There are three alternative sources of information
with which to compare our mtDNA data: allozymic
(Wynn & Heyer, 2001), morphological (Heyer, 1978),
and advertisement call data (Heyer & Reid, 2003).

Allozymes and mtDNA integration
Comparing allozyme and mtDNA markers has been
very useful in understanding historical vs. current

patterns of genetic cohesion among and within
species units in other amphibian studies (Shaffer &
McKnight, 1996; Wake & Schneider, 1998; Donnellan
et al., 1999; Garcia-Paris et al., 2000; Wake & Jock-
usch, 2000; Mead, Tilley & Katz, 2001; Jockusch &
Wake, 2002).

All localities sampled for allozyme variation in
L. fuscus were also included in the mtDNA analysis. A
detailed comparison of the mtDNA and allozyme-
based trees revealed a general agreement between
both datasets on a continental scale (Fig. 4). This
north-to-south pattern of differentiation throughout
the range distribution was consistent with an overall
low but significant association between both datasets
in the Mantel test. Samples from northern South
America, Panamá, Trinidad, and Tobago formed a
cluster in the phylogenetic analysis using allele fre-
quency data (Fig. 4A, Wynn & Heyer, 2001); this clus-
ter was almost identical to basal clade A (Guyana was
not included in the allozyme analyses). In addition,
the low Nei’s distances among these northern samples
were consistent with the shallow topology of clade A in
the mtDNA analysis. However, relationships within
the ‘northern’ allozymic unit differed from those
within clade A, reflecting a lack of concordance
between datasets on a regional scale. For example, in
the allozyme results, Tobago clustered with mainland
samples and not with Trinidad, and the Roraima sam-
ples appeared more closely related to each other than
in mtDNA-based clade A. However, the relationship
between Tobago and mainland samples derived from
allele frequencies rather than from discrete character
changes. The Trinidad samples formed a cluster in
the allozyme analysis that was consistent with the
mtDNA data (Table 1).

In both datasets, the southern samples showed
greater divergence among themselves than did the
northern samples. This was reflected in their separa-
tion into two nonsister basal clades (clades B and C) in
the mtDNA analysis and the lack of consistent clus-
tering of southern populations (because of substantial
genetic isolation) in the allozyme analyses.

The  mtDNA-defined  basal  clades  B  and  C  were
not recovered in the allozyme analysis since the
J. V. González sample formed a highly supported clade
with the Embarcación sample. Furthermore, the ML
bootstrap of the allozyme data only provided convinc-
ing support for the two Argentinean samples, in strong
contrast to our mtDNA results. Beyond sampling
problems that could affect the comparisons, it is inter-
esting to notice that these two localities, only 160 km
apart, are close to a potential contact zone between
mtDNA clades B and C. Previous studies have found
asymmetrical geographic patterns in nuclear- vs. mt-
linked markers in areas believed to represent contact
zones between divergent phylogenetic units (Wake,
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Figure 4. Phylogenetic relationships among the populations sampled for allozyme and mtDNA data. A, Strict consensus
of the three networks reported by Wynn & Heyer (2001) based on allozymes. Dashed branches represent disagreement
among the networks. B, Strict consensus of Bayesian, maximum likelihood, and maximum parsimony trees of combined
data reported in this study. For simplification, São Paulo is represented by a single sample and Guyana is excluded because
it was not sampled in the allozyme study.
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1997; Mead et al., 2001). Thus, instead of considering
these conflicting patterns as a methodological prob-
lem, these asymmetries are usually interpreted as
isolation and differentiation of genetic units with
subsequent contact between them (Wake & Schneider,
1998; Wake & Jockusch, 2000; Jockusch & Wake,
2002).

Both molecular markers supported the distinctive-
ness of a rather homogeneous ‘northern’ phylogenetic
unit with low genetic distances among the samples
across northern South America that remain connected
by gene flow. Allozymes placed southern populations
in a deeply differentiated cluster with reduced or no
gene flow among many of the samples suggesting the
presence of more than one lineage in southern South
America. The mtDNA analysis also showed marked
differentiation among southern samples and sup-
ported their separation into two basal and nonsister
clades, clades B and C. Clade B was more closely
related to the ‘northern’ A clade than it was to clade C.

In summary, both datasets supported the existence
of a phylogenetic unit within L. fuscus restricted to
northern South America. In addition, the allozyme
data was consistent with the mtDNA data in that
there were deep divergences among the samples south
of the Amazon River. The mtDNA analyses suggested
a split of southern samples into two additional phylo-
genetic units, one restricted to the western portion of
southern South America and the other occupying the
southern and south-eastern parts of the geographic
distribution of L. fuscus (with the exception of the
J. V. González sample). The lack of agreement between
these datasets regarding the insular samples pre-
cluded recognition of a distinct phylogenetic unit
restricted to Trinidad and Tobago. The mtDNA differ-
entiation among Trinidad and Tobago populations and
their distinctness from mainland samples requires
further sampling to elucidate their status.

Morphology, advertisement call, and mtDNA 
integration
Morphological variation within L. fuscus is relatively
extensive and similar to that of other widely distri-
buted taxa of the L. fuscus species group (Heyer,
1978). Previous morphological analysis (Heyer, 1978)
revealed poor geographic structuring of populations
except for the discrimination of some peripheral
localities such as Colombia, Panamá, and Argentina.
Although morphological differentiation occurs in the
periphery of its geographic distribution, the variation
is continuous without discrete breaks preventing rec-
ognition of diagnosable units. Although this peri-
pheral distinctiveness in morphology is, at most,
compatible with the genetic units, the overall morpho-
logical variation does not show the level of geographic
structuring seen in the allozyme and mtDNA data.

Likewise, variation in advertisement calls throughout
the distribution of L. fuscus does not show geographic
structure, since variability within a locality is equal to
or greater than the variability between localities
(Heyer & Reid, 2003). Moreover, there is much less
variation in the call features of L. fuscus than that
found among closely related species of the L. fuscus
species group.

The morphological and advertisement call variation
in L. fuscus is characterized by continuous change
throughout its geographic distribution. Consequently,
both types of data support the hypothesis that
L. fuscus is a single widely distributed taxon. Concor-
dance between morphology and advertisement call dif-
ferentiation patterns across taxonomic boundaries
represents the common pattern for the genus Lepto-
dactylus (Heyer, 1978). However, there are exceptions
to this pattern, with two morphologically identical
species that differ strikingly in their calls (Heyer,
García-Lopez & Cardoso, 1996; Kwet, Di-Bernardo &
Garcia, 2001) and are not sister taxa (de Sá, Heyer &
Camargo, 2005). The mate recognition information
carried by advertisement call features serves an
important role in assessing species boundaries among
frogs (Gerhardt, 1988). Nevertheless, there are a few
exceptions among frogs, with genetic data revealing a
lack of correlation between speciation and advertise-
ment call characteristics (Sullivan, Malmos & Given,
1996; Gergus, Sullivan & Malmos, 1997; Gergus,
1998). For example, there are cases in which specia-
tion processes in frogs apparently occur without diver-
gence in advertisement call features. Recently, Heyer
& Reid (2003) cited examples where differentiated
genetic units occurring in allopatry have not come into
secondary contact and their advertisement calls have
not diverged. In other cases, isolation mechanisms
other than advertisement call may be involved in
maintaining species identity in spite of the occasional
production of viable hybrids in contact zones (e.g.
Bufo microscaphus complex, Gergus et al., 1997). A
lack of divergence in advertisement calls among
closely related species occurring in allopatry or para-
patry could be the result of selective pressures
imposed by a similar acoustic environment (Gergus
et al., 1997). Similar behavioural aspects of the repro-
ductive biology of L. fuscus at several localities sug-
gest that the populations share a common acoustic
environment across the geographic distribution
(Sazima, 1975; Solano, 1987; Martins, 1988; Rossa-
Feres, Menin & Izzo, 1999). Thus, the advertisement
call is not always a reliable indicator of species-level
differentiation, as is generally assumed in frog sys-
tematics. However, these cases are perfectly congruent
with a lineage concept of species because divergence in
the two daughter lineages can occur in a set of char-
acters that does not affect directly their reproductive
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compatibility. De Queiroz (1998) advises that the most
effective criterion to detect newly originated lineages
will differ according to how the speciation process
occurred. A biological species criterion based on a
behavioural premating isolation mechanism (e.g.
advertisement call) that is under strong selective pres-
sure will not always be as efficient in detecting split-
ting of lineages compared with other characters that
started to diverge as soon as the daughter lineages
became genetically isolated, such as neutral molecular
markers. We argue that L. fuscus exemplifies a case in
evolutionary biology in which speciation is not neces-
sarily linked to changes in a premating isolation
mechanism as required by a biological species crite-
rion. However, Wynn & Heyer (2001) noted that
allozymic Nei’s distances within L. fuscus  suggest
that genetic differentiation is high enough to allow the
evolution of post zygotic isolation, i.e. it surpasses
the threshold of Nei’s distance = 0.3 for hybrid inviabil-
ity (Sasa, Chippindale & Johnson, 1998). The case of
L. fuscus also shows that the practice of species delimi-
tation demands the use of (i) multiple types of data
(even if incongruent), and (ii) a phylogenetic approach
to address appropriately cases in which the speciation
process has resulted in the origin of cryptic taxa in
terms of both morphology and advertisement calls.

CONCLUSIONS

Non-molecular data (e.g. morphology and advertise-
ment calls) support a single-species hypothesis for
L. fuscus, whereas molecular data (e.g. mtDNA and
allozymes) support a multiple-species hypothesis.
Based on the molecular data, we could assign the
three mtDNA basal clades A, B and C of L. fuscus
occurring in northern, southern and south-eastern,
and western South America, respectively, to different
phylogenetic units that are following independent
evolutionary trajectories, consistent with different
species under the general lineage concept of species.
However, the absence of morphological or call diagnos-
tic characters for these clades, our limited geographic
sampling, and the uncertainty about current levels of
gene flow among them, does not warrant at this time
the assignment of formal taxonomic status to these
phylogenetic units. This study offers a hypothesis of
species delimitation of L. fuscus into three geographic
lineages to be tested with further field, natural his-
tory, and molecular data. The single new dataset with
the highest probability of providing lineage resolution
is mt and nuclear DNA markers of an intensive geo-
graphic sampling transect between J. V. González and
Embarcación, Argentina.

L. fuscus probably exemplifies a case in species-level
systematics where species delimitation cannot be
approached from the usual, biological-species perspec-

tive because lineage diversification occurs in charac-
ters that are not associated with the reproductive
isolation/recognition system.
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APPENDIX

Specimen data of samples used in this study

Sample (Abbreviation) Locality Museum Number Field Number

Tobago (Toba) Saint Paul; Roxborough, Tobago USNM 306067 USNMFS175556
Arima (Arim) Saint George; Arima, Trinidad USNM 306149 USNMFS175674
Nariva (Nari) Manzanilla Mayaro Road; Nariva, Trinidad USNM 306123 USNMFS 175651
Icacos (Icac) Saint Patrick; Icacos Point, Trinidad USNM 287012 USNMFS 175494a
Guyana (Guya) East Berbice; Region 10 cty., Guyana USNM 497739 USNMFS 207166
French Guiana (FrGu) Cayenne; Sinnamary, French Guiana USNM 291363 USNMFS 175602
Igarapé Cocal (IgCo) Roraima; Igarapé Cocal, Brazil MZUSP 76019 USNMFS 8618
Normandia (Norm) Roraima; Caracaranã, near Normandia, Brazil MZUSP 67073 USNMFS 8739
Boa Vista (BoVi) Roraima; Bôa Vista, Brazil MZUSP 67039 USNMFS 8763
São Paulo1 (São1) São Paulo; Luiz Antonio, Brazil USNM 303149 USNMFS 52998
São Paulo2 (São2) São Paulo; Luiz Antonio, Brazil USNM 303154 USNMFS 53025
São Paulo3 (São3) São Paulo; Luiz Antonio, Brazil USNM 303155 USNMFS 53026
São Paulo4 (São4) São Paulo; Luiz Antonio, Brazil USNM 303156 USNMFS 53027
São Paulo5 (São5) São Paulo; Luiz Antonio, Brazil USNM 303157 USNMFS 53028
Pará (Pará) Pará; Serra de Kukoinhoken, Kenpore, Brazil MZUSP 66954 MZUSP 930112
Pernambuco (Pern) Pernambuco, Brazil USNM 284551 USNMFS 8541
PalosBlancos (PaBl) La Paz; Palos Blancos, Bolivia CBF? USNMFS 174020
Beni (Beni) Beni; Beni Biosphere Reserve, Bolivia CBF 02908 USNMFS 174133
Embarcación (Emba) Salta; Embarcación, Argentina FML 04789 USNMFS 175829
J. V. González (JVGo) Salta; Joaquín V. González, Argentina FML 04788 (7) USNMFS 175758
Panamá (Pana) Tocumen; Panamá City, Panamá USNM 306189 USNMFS 186541
L. mystacinus (Taci) San José; Sierra de Mahoma, Uruguay RdS 789
L. mystaceus (Myce) Pará; Serra de Kukoinhokren, Brazil MZUSP 70371 940034

Additional locality data are given in Wynn & Heyer (2001). See also Figure 1.
CBF, Colección Boliviana de Fauna (Bolivia); FML, Fundación Miguel Lillo (Argentina); MZUSP, Museum of Zoology of
the University of São Paulo (Brazil); RdS, Rafael O. de Sá personal collection; USNM, National Museum of Natural History
(U.S.A.).




